Software Help with Software Geodetic Utilities Plate Motion Calculator Input Overview Models Usage Notes References Other plate motion calculators

GAGE Plate Motion Calculator


Before using, please see:    Overview     Models     Usage     Notes     References

Enter latitude and longitude coordinates (and optionally other selections) and hit Submit button:

Latitude: degrees North
minutes North
seconds North
E.g. enter the latitude as –56.25 degrees or –56 degrees 15 minutes for 56 degrees 15 minutes South.
Longitude: degrees East
minutes East
seconds East
E.g. enter the longitude as –102.5 degrees or –102 degrees 30 minutes for 102 degrees 30 minutes West.
Height: height (meters)
optional WGS-84 height of geographic coordinate
(default = 0 meters)
XYZ: ... or enter the position in WGS-84 XYZ coodinates:
X (meters)
Y (meters)
Z (meters)
Site Name: Site Name
optional, only for printout; for example: AIRP
Multiple
Geographic
Coordinates
(Lon Lat Height):
... or enter multiple geographic positions (lon,lat in decimal degrees; height in meters) with optional site name; each position must be comma delimited from the others:

Multiple XYZ: ... or enter multiple WGS-84 XYZ positions (meters) with optional site name; each position must be comma delimited from the others:

Model:
Tectonic Plate of Attributed Motion:
Auto = plate (based on plate selection of NUVEL 1A model) is determined automatically;
other = plate is user-selected
Reference:
motion referenced to NNR frame or fixed-plate, or HS "hotspot" frames for HS2-NUVEL1A or HS3-NUVEL1A models
Your own angular velocity of attributed motion: Note: must select user specified option in the Tectonic Plate menu above to use!

Enter the angular velocity as the Euler pole of rotation and right-handed rotation rate about that pole:
latitude of Euler pole ( ° )
longitude of Euler pole ( ° )
rotation rate ( °/Myr)

... or enter the angular velocity as cartesian components:
x-component ( °/Myr)
y-component ( °/Myr)
z-component ( °/Myr)
Your own reference angular velocity: Note: must be select user specified option in the Reference menu above to use!

Enter the angular velocity as the Euler pole of rotation and right-handed rotation rate about that pole:
latitude of Euler pole ( ° )
longitude of Euler pole ( ° )
rotation rate ( °/Myr)

... or enter the angular velocity as cartesian components:
x-component ( °/Myr)
y-component ( °/Myr)
z-component ( °/Myr)
Output format:
     

Overview

Our Plate Motion Calculator calculates tectonic plate motion at any location on Earth using one or more plate motion models. You can specify:

  • position in geographic or WGS-84 XYZ coordinates
  • the tectonic plate (default is auto selection)
  • plate motion model (default is GSRM v2.1)
  • motion referenced either to a fixed plate or the NNR (no-net-rotation) frame of the selected model (default is NNR)
  • optional site name
  • multiple point entry in geographic or XYZ coordinates
  • for advanced users: define your own angular velocity of attributed motion and/or your own reference angular velocity (specifying the angular velocity as an Euler pole of rotation plus the rotation rate about the Euler pole, or as cartesian coordiantes of the angular velocity vector)
  • output format style (HTML table in local E-N frame or WGS-84 XYZ frame, or GMT psvelo)

Models

The possible plate motion models that can be used are:

ITRF2020 Altamimi, Métivier, Rebischung, Collilieux, Chanard, and Barnéoud [2023]
GSRM v2.1 (2014) Kreemer, Blewitt, and Klein [2014]
ITRF2014 Altamimi, Rebischung, Métivier, and Collilieux [2016]
ITRF2008 Altamimi, Métivier, and Collilieux [2012]
NNR-MORVEL56 Argus, Gordon, and DeMets [2011]
MORVEL (2010) DeMets, Gordon, and Argus [2010]
GEODVEL (2010) Argus, Gordon, Heflin, Ma, Eanes, Willis, Peltier, and Owen [2010]
APKIM2005 Drewes [2009]: ITRF2005 site solutions by DGFI or IGN
GSRM v1.2 (2004) Kreemer, Holt, and Haines [2004]
CGPS (2004) Prawirodirdjo and Bock [2004]
REVEL 2000 Sella, Dixon, and Mao [2002]
ITRF2000 (AS&B [2002]) Altamimi, Sillard, and Boucher [2002]
HS3-NUVEL 1A Gripp and Gordon [2002]
APKIM2000 Drewes [1998], Drewes and Angermann [2001]
ITRF2000 (D&A [2001]) Drewes and Angermann [2001]
HS2-NUVEL 1A Gripp and Gordon [1990], DeMets, Gordon, Argus, and Stein [1994]
NUVEL 1A DeMets, Gordon, Argus, and Stein [1994]
NUVEL 1 Argus and Gordon [1991]

(Please see References at the end of this page.) The velocity uncertainties of each model are not taken into consideration and are assumed to be zero.

If you know of another plate motion model, possibly recently published, that uses a no-net-rotation (NNR) frame that you would like included in this calculator, please contact data-helpearthscope.org.

Usage

It's much easier than it looks at first. For a single point, just enter the longitude and latitude and hit Submit. In this case, your point will then be located using the Auto plate selection, with motion referenced to the NNR frame of the ITRF2020 model. If, however, you feel that your coordinate is in some other plate or subplate (see Notes below), you can override the Auto plate selection and select some other plate and then resubmit. Likewise, if you want the motion relative to some other fixed plate, overide NNR as a reference. If you have coordinates in WGS-84 XYZ (cartesian) values, you can use those values as input. Try different models, or look at results from all models.

Once you get the feel for a single point entry, you can try multiple point entry. There are three important things to remember. First, each set of values for a location, whether in geographic or cartesian coordinates, must be separated from the others by a comma. Second, if you are using geographic coordinates, a height value (even if zero) must be supplied. Anything after the third coordinate (height if geographic, Z if cartesian) and before the comma is taken an optional site name. So, for geographic multiple point entry, your entry could look like:

-105.27 43.98 0 test site1,
-104.45 42.02 0,
-107.23 45.56 0,

Third, either all the multiple points need to be on the same tectonic plate, or else you should use the Auto plate selection, though (see Notes below) this means that the auto plate selection will only find the plates defined for NUVEL 1A.

Results for the geographic poles, 90°N and 90°S, will be correct but the east and north components of the velocity vector depend on the longitude given. To convince yourself, step back from the geographic pole a little, say, to 89.99°N or 89.99°S, at the same longitude and repeat the calculation.

Notes

If selected, the angular velocity parameters of NNR-NUVEL-1 by Argus and Gordon [1991] and NUVEL-1A by DeMets et al. [1994] are used. NUVEL-1A angular velocities are generally the same as NUVEL-1, except that the rate of rotations are on average about 4.4% slower due to an adjustment to the magnetic anomaly time scale. For the Juan de Fuca and Philippine Sea angular velocities of NUVEL-1A, the more recent recalibrated angular velocities are used.

Care must be taken when comparing a specified plate between different models, because which plates are defined or have defined angular velocities varies from model to model. The Auto plate selection of the calculator uses 15 plate boundaries corresponding to the NUVEL 1A model (bold in the table below). See map of 15 plate boundaries and ASCII files of these boundaries' coordinates. Using the table below, then, the Antarctica plate (AN) of NUVEL 1 corresponds to the combined Antarctica (AN) and Scotia (ST) plate of NUVEL 1A. Likewise, the combined Australia (AU) and Capricorn (CP) plates of the GSRM correspond to the Australia (AU) plate of the other models. In certain models, some plates have no defined angular velocity, e.g. the India (IN) plate in the APKIM2000 model. This leads to two important points:

Caveat emptor!

  • If you or the Auto plate selection selects a plate for your location that is not accounted for in the selected model, that plate is assumed to have a zero angular velocity. Likewise, if you select a fixed-plate reference where that plate is not accounted for in the selected model, that fixed-plate reference is assumed to have a zero angular velocity with respect to the NNR frame. Therefore, make sure that the selected plate and fixed-plate reference (if not NNR) are defined for the selected model before using the results.
  • If you enter your own Euler vector for an angular velocity of attributed motion and select NNR as the reference (for any model), by definition this is exactly the same as setting the reference angular velocity to a zero Euler vector.

Another subtle point is that the plate motion models apply only on those places on a plate undergoing rigid body rotation — which is especially important to keep in mind for the GSRM. If you are attempting to model the motion in a plate boundary zone which is undergoing strain deformation (i.e. not just a simple rigid body rotation), then the rigid body motion model is only an approximation to the actual motion.

NUVEL 1 AF AN AR AU CA CO EU IN JF NZ NA PA PH SA
NUVEL 1A AF AN ST AR AU CA CO EU IN JF NZ NA PA PH SA
HS2-NUVEL1A AF AN AR AU CA CO EU IN JF NZ NA PA PH SA
ITRF2000
D&A [2001]
AF+SO AN   AR AU CA   EU+EA IN   NZ NA PA   SA
APKIM2000 AF+SO AN   AR AU CA   EU+EA     NZ NA PA   SA
HS3-NUVEL1A AF AN ST AR AU CA CO EU IN JF NZ NA PA PH SA
ITRF2000
AS&B [2002]
  AN     AU     EU       NA PA   SA
REVEL NU+SO AN   AR AU CA   EU+AT
+SC+SU
IN   NZ NA+OK
+SR
PA PH SA
CGPS NU+SO
+SI
AN   AR AU CA   EU+AM
+AT+SC
+SU
IN   NZ NA+SR PA   SA
GSRM v1.2 NU+SO AN ST AR AU+CP CA CO+RI EU+AM
+AT+SC
+SU+TA
IN JF NZ NA+OK PA+CR PH SA
APKIM2005 AF+SO AN   AR AU CA   EU+AM
+AT+SU
+YZ
IN   NZ NA+OK PA   SA
GEODVEL NU+SO AN   AR AU     EU IN   NZ NA PA   SA
MORVEL
and
NNR-MORVEL56
NU+SO
+LW
AN ST+SW AR AU+CP
+MQ
CA CO+RI EU+AM
+AT+SU
+YZ
IN JF NZ NA+OK PA+CR
+Sur
PH SA
ITRF2008 NU+SO
+SU
AN   AR AU CA   EU+AM IN   NZ NA PA   SA
ITRF2014 NU+SO AN   AR AU     EU IN   NZ NA PA   SA
GSRM v2.1 * AF+SO
+SI
AN ST AR AU+CP CA CO+RI EU+AM
+SU
IN JF NZ NA+OK PA+CR
+BC
PH SA
ITRF2020 NU+SO AN   AR AU CA   EU+AM IN   NZ NA PA   SA

* Besides the listed plates and microplates for the GSRM v2.1 model, there are 26 additional microplates along what are usually considered plate boundary regions. The user is advised to find the location of these microplates in the GSRM v2.1 model before using them.

Note 1: The MORVEL models and the GSRM v2.1 model also contain many small plates, many defined in Bird [2003], which are typically on or near the plate boundaries between major plates, which are too numerous to list in the above table.

Note 2: Full plate names, including those for the many small plates mentioned in Note 1 above, are in the Tectonic Plate and Reference pulldown menus.

And what is a "no-net_rotation" (aka NNR) frame? By definition it is the reference frame for a given model of plate motion that yields zero for the integral of the vector cross-product v x r over the surface of the Earth.

HS2-NUVEL1A and HS3-NUVEL1A: Technically these models are not published in a NNR frame, since these represent the plate motions relative to fixed "hotspot" frames. In order to make this calculator function more logically, however, these models are also provided here in a NNR frame whereby the following "hotspot frame - NNR frame" rotations have been applied:

  latitude of
Euler pole
longitude of
Euler pole
rotation rate
HS2-NUVEL1A –49.18° 65.00° 0.3194°/Myr
HS3-NUVEL1A –55.916° 70.00° 0.43607°/Myr

From this calculator, you should obtain about the same site motion for the NUVEL 1A model in the NNR frame and HS2-NUVEL1A model rotated into the NNR frame; the difference is mainly due to rounding errors using the various model parameters tabulated in different units, including the parameters for the "HS2 hotspot frame - NNR frame" rotation above.

References

Altamimi, Z., Métivier, L., Rebischung, P., Collilieux, X., Chanard, K., & Barnéoud, J. (2023). ITRF2020 plate motion model. Geophysical Research Letters, 50, e2023GL106373. https://doi.org/10.1029/2023GL106373.

Altamimi, Z., P. Sillard, and C. Boucher, ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications, J. Geophys. Res., 107(B10), 2214, https://doi.org/10.1029/2001JB000561, 2002; see also tn31_270.pdf.

Altamimi, Z., L. Métivier, and X. Collilieux, ITRF2008 plate motion model, J. Geophys. Res., 117(B07402), 14 pp., https://doi.org/10.1029/2011JB008930, 2012.

Altamimin, Z., P. Rebischung, L. Métlvler, and X. Collilleux, ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions, J. Geophys. Res., 121, 6109-6131, https://doi.org/10.1002/2016JB013098, 2016.

Argus, D.F. and R.G. Gordon, No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1, Geophys. Res. Lett., 18, 2039-2042, https://doi.org/10.1029/91GL01532, 1991.

Argus, D.F., R.G. Gordon, and C.DeMets, Geologically current motion of 56 plates relative to the no-net-rotation reference frame, Geochemistry, Geophysics, Geosystems, 12, No. 11, 13 pp., https://doi.org/10.1029/2011GC003751, 2011.

Argus, D.F., R.G. Gordon, M.B. Heflin, C. Ma, R.J. Eanes, P. Willis, W.R. Peltier, and S.E. Owen, The angular velocities of the plates and the velocity of the Earth's centre from space geodesy, Geophys. J. Int., 18, 1-48, https://doi.org/10.1111/j.1365-246X.2009.04463.x, 2010; Don Argus kindly provided us with the GEODVEL NNR angular velocities.

Bird, P., An updated digital model of plate boundaries, Geochemistry, Geophysics, Geosystems, 4, No. 3, 52 pp., https://doi.org/10.1029/2001GC000252, 2003; see also 2001GC000252.pdf.

DeMets, C., R.G. Gordon, D.F. Argus, and S. Stein, Current plate motions, Geophys. J. Int., 101, 425-478, https://doi.org/10.1111/j.1365-246X.1990.tb06579.x, 1990.

DeMets, C., R.G. Gordon, D.F. Argus, and S. Stein, Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. Lett., 21, 2191-2194, https://doi.org/10.1029/94GL02118, 1994.

DeMets, C., R.G. Gordon, and D.F. Argus, Geologically current plate motions, Geophys. J. Int., 181, 1-80, https://doi.org/10.1111/j.1365-246X.2009.04491.x, 2010; see also Erratum, Geophys. J. Int., 0, 1-1, https://doi.org/10.1111/j.1365-246X.2011.05186.x, 2011.

Drewes, H., Combination of VLBI, SLR, and GPS determined station velocities for actual plate kinematic and crustal deformation models, Geodynamics, M. Feissel (Ed.), IAG Symposia, Springer, https://doi.org/10.1007/978-3-642-72245-5_59, 1998.

Drewes, H., The Actual Plate Kinematic and Crustal Deformation Model APKIM2005 as basis for a non-rotating ITRF, Geodetic Reference Frames, H. Drewes (Ed.), IAG Symposia, 134, 95-99, Springer, https://doi.org/10.1007/978-3-642-00860-3_15, 2009.

Drewes, H., and D. Angermann, The Actual Plate Kinematic and Crustal Deformation Model 2000 (APKIM2000) as a Geodetic Reference System, AIG 2001 Scientific Assembly, Budapest, 2-8 Sept 2001; see also DS_APKIM.pdf.

Gripp, A.E., and R.G. Gordon, Current plate velocities relative to the hopspots incorporating the NUVEL-1 global plate motion model, Geophys. Res. Lett., 17, 1109-1112, https://doi.org/10.1029/GL017i008p01109, 1990.

Gripp, A.E., and R.G. Gordon, Young tracks of hotspots and current plate velocities, Geophys. J. Int., 150, 321-361, https://doi.org/10.1046/j.1365-246X.2002.01627.x, 2002.

Kreemer, C., Global Strain Rate Map Project; Corné Kreemer kindly provided NNR angular velocities for version 1.2, May 2004; see also Kreemer, C., W.E. Holt, and A.J. Haines, An integrated global model of present-day plate motions and plate boundary deformation, Geophys. J. Int., 154, 8-34, https://doi.org/10.1046/j.1365-246X.2003.01917.x, 2003.

Kreemer, C., G. Blewitt, and E.C. Klein, A geodetic plate motion and Global Strain Rate Model, Geochemistry, Geophysics, Geosystems, 15, 3849-3889, https://doi.org/10.1002/2014GC005407, 2014.

Prawirodirdjo, L., and Y. Bock, Instantaneous global plate motion model from 12 years of continuous GPS observations, J. Geophys. Res., 109, B08405, doi:10.1029/2003JB002944, 2004; see also SOPAC Pole Rotation Tables for the latest and earlier monthly solutions of the CGPS model parameters.

Sella, G.F., T.H. Dixon, and A. Mao, REVEL: A model for recent plate velocities from space geodesy, J. Geophys. Res., 107, B4, https://doi.org/10.1029/2000JB000033, 2002.

Other plate motion calculators

 

Last modified: 2024-06-11  17:52:23  America/Denver