
Next Steps:

1) Integrating additional data set/time 
series into the streaming analysis. 

2) Modeling of volcanic processes, 
specific to both Hawaii and 
Yellowstone 

3) Machine learning analysis of 
integrated time series.

Please contact 
Brianna.Corsa@Colorado.edu for 

questions or inquiries.
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What is GeoSciFramework?

The main goal of the GeoSciFramework project is to improve intermediate-to-
short term forecasts of catastrophic natural hazard events, allowing researchers to
instantly detect when an event has occurred and reveal the more suppressed,
long-term motions of Earth's surface at unprecedented scales.

Data: Seismic, GNSS, tide gauge, and satellite SAR data are all effective tools used
to characterize earthquakes, tsunamis, and volcanic eruptions. However, the size
and complexity of the data, combined with models and the required processing
steps makes evaluating hazards for early warning a Big Data problem.

Framework: Geoscientists and computer scientists are working together to build a
real-time processing system capable of streaming multiple large data sets while
employing machine learning algorithms designed to recognize signals produced by
geophysical events.

Figure 3: Above are SAR
scenes over Yellowstone
National Park and below
are scenes over Hawaii
Island. SAR scenes from
multiple satellites using
various wavelengths are
integrated into a single
time series of ground
deformation using the
Multidimensional Small
Baseline Subset (MSBAS)
method (Samsonov and
D’Oreye, 2012).

Figure 2 (above): Cumulative LOS displacement time series maps from Sentinel-1 data over Yellowstone National Park from Feb. 22, 2017 to A) Oct. 8, 2017, B) July
11, 2018, and C) Jan. 19, 2019. The complete time series, as shown in C, is generated using 117 interferograms produced on GMT5SAR and GIAnT using descending
Path 100 and Frames 441 & 446, (as of 12/3/19 and outlined in pink in Figure 3). Figures D-F show the time series at a specified pixel, corresponding to the
appropriate colored circle in C.

Figure 1: The left diagram shows how our automated InSAR code generates time series on GMT5SAR (blue) and GIAnT
(gray). The entire process can take multiple days to compute on the Summit Supercomputer in Boulder. The diagram on
the right shows our interpretation of Zebker & Zheng’s more efficient approach, which can take only hours to compute.

Using DInSAR to Measure Short-to-Long 
Term Hazard Events:

Automated processing of differential
interferometric synthetic aperture radar
(DInSAR) over Yellowstone National
Park and the Big Island of Hawaii will be
streamed into the GeoSciFramework to
measure ground deformation and
associated time series. Time series will
be integrated with other data sets,
including in situ seismic, strain, GNSS,
gas and thermal sensors. Machine
learning will be performed on all data
sets to detect geophysical hazards.

We have successfully automated InSAR
time series using traditional methods
(See figures 1 and 2) on GMT5SAR and
GIAnT. We are currently comparing
results from the recently proposed
method by Zebker & Zheng (2017), by
rewriting C code on GMT5SAR. The
method utilizes only the phase
component of the radar signal to obtain
time series (See Figure 1).

Figure 4 (above): Atmospheric correction in SAR interferograms from the Generic Atmospheric Correction Online Services (GACOS). The interferogram
spans dates 09/02/17-10/20/17. This is a more extreme case that demonstrates how DInSAR results can be significantly effected when applying an
atmospheric correction.

Figure 5 (left): Impact of
using precise and real-time
orbits in time series over
Hawaii from Oct. 2017 to
June 2018. A) Uses only
precise orbits. B) 39
images using precise orbits
and 6 using real-time. C)
The difference between A
and B. (Note change in
scale)

Automated InSAR Processing Steps
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