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The project addresses goals of the National Strategic Computing Initiative (NSCI). a whole-of-nation effort to 

accelerate scientific discovery and economic competitiveness by maximizing the benefits of high-performance 

computing (HPC) research, development, and deployment. It also addresses the NSF Harnessing the Data 

Revolution (HDR) Big Idea. a national-scale activity to enable new modes of data-driven discovery that will allow 

new fundamental questions to be asked and answered at the frontiers of science and engineering.



Project Overview: GeoSciFramework will provide 
an experimental computational framework that 
enables natural hazards research and enhanced 
earthquake, tsunami and volcano early warning 
systems.

Real-time streaming analytics and machine 
learning on continuous integrated data streams 
from thousands continental and oceanic high-rate 
sensors, when combined with satellite radar time 
series, will give a coherent high-resolution 
global-scale view of the motions of the earth over 
time periods of seconds to years.

Map: Onshore and offshore sensor networks spanning Cascadia to 
Yellowstone. Photos: Ocean Bottom Seismometer (Rutgers/OOI), 
Seismograph Station (PNSN/IRIS), Borehole Strainmeter and GPS/GNSS 
Station at Mt. St. Helens (UNAVCO/GAGE)

GeoSciFramework

● Participating Institutions: UNAVCO/GAGE, Rutgers University (Ocean Observatories Initiative 
- OOI), University of Colorado, University of Oregon

● Collaborating Institutions: IRIS/SAGE, University of Texas Arlington (TACC/XSEDE)



● Integrated data access: The framework 
leverages and provides seamless access 
to considerable NSF investments in 
EarthScope (GAGE and SAGE) and OOI in 
situ sensor networks, 
internationally-operated space radar 
systems, and NSF XSEDE computational 
and data storage resources. 

Sample data from GPS (1s/day), high-rate GPS (1s/sec), 
borehole strainmeters, pore pressure, borehole seismometer,  
tiltmeter, ocean bottom seismometer, ocean hydrophone, 
ocean bottom pressure,  insar image and insar time series

GeoSciFramework





1. Complete overhaul of the VPN.
2. Careful cost analysis.
3. Multiple user communities. 



Broader Impacts
● Two UNAVCO USIP student interns for 

Summer 2019.
● Working in-reach/out-reach material for 

GEOSciCloud and GEOSciFramework 
developing Jupyter noterbooks 
demonstrating and teaching access to 
UNAVCO data (e.g. how to access and use 
real-time GNSS positions)

Lisa Knowles

Rachel Terry

Rachel Terry

● Broader Impacts Activities: 
Resources for internal and 
external capacity building are 
integral to the project including 
support for students and 
technical workshops, 
development of supportive 
materials such as online 
notebooks, and access to open 
software development 
platforms and computational 
resources.



The project architecture provides generalized, scalable (laptops to cloud 
computing), fault-tolerant, real-time, event-based data processing and 
analysis capabilities for time series data from distributed sources. 

● Machine Learning: an advanced convolutional neural network method 
is employed in an integrative multi-data environment. Machine 
learning algorithms and spatio-temporal analyses are trained using 
past events and informed by physics-based models.

● Computational Resources: The computationally intensive attempt to 
blindly correlate a large number of variables and large volumes of data 
will be performed on local clusters and NSF-funded cloud resources 
managed by XSEDE, such as Jetstream.

● Application: This method supports the automatic detection and 
characterization of rapid events such as earthquakes and tsunamis as 
well as slow-slip events or magmatic intrusions that evolve over a 
longer period of time expanding the potential for new scientific 
discoveries. 

● Broader Impacts Activities: To facilitate discoveries, the system 
architecture will provide simplified access to tools, sophisticated 
workflows systems and training targeted at non-computer scientists 
(researchers and students).

● Algorithm development: An interactive environment allows users to 
test, modify, and implement their ideas as they integrate the large 
variety and volume of this data into new machine learning and analysis 
algorithms and products.



Real-time short-term 
forecasts

Goal:
Characterize a large 
earthquake and its 
hazards ASAP

https://docs.google.com/file/d/1g-vFaYASufQKy4LG6mQfC4PyHvZdGptC/preview


Simulate events M7-M9

Use current distribution of 
sites in Chile



Best model!
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Trained by flat Mw



2010 M8.8 Maule 
earthquake

Magnitude 
convergence in ~25s



Offshore hazards simulations

● Simulated Cascadia M8.7 earthquake
● Realistic offshore pressure and coastal tide gauge data
● Modeled on-shore inundation
● Testing of algorithms, how well and how quickly can we 

forecast the induation?Williamson et al., in review



Next steps

Who cares about 
the earthquake?

Predict/forecast 
shaking intensity and 
tsunami heights



Kristy Tiampo, University of Colorado
Intermediate-term Events. Natural catastrophes occur at a variety of spatial and 
temporal scales.  In particular, solid earth hazards, such as large earthquakes and 
volcanic eruptions, often have very long interevent times and this makes it difficult 
to forecast their behavior. This part of the project pulls in multiple data sets to 
address the long- intermediate- and short-term forecasting of these types of events.  
Test sites include the Yellowstone magmatic center and the Hawaiian island 
volcanoes.

● Data Sources: Data types include in situ seismic, strain, GNSS, gas and thermal  
sensors and remote-sensing synthetic aperture radar (SAR) data. 

● Algorithms: Repeatedly acquired SAR data from a single sensor can be used to 
obtain differential interferometric synthetic aperture radar (DInSAR) estimates of 
ground deformation and associated time series. In addition, a new technique, 
Multidimensional Small Baseline Subset, allows us to incorporate Interferometric 
SAR results from different satellites and wavelengths into one time series. Here we 
process DInSAR  for Yellowstone and include them in the time series stream, 
integrated with GNSS data, providing 3-d surface motions of the caldera.

● Broader Impacts Activities: The analysis of SAR data on a global scale is a 
petabyte-scale Big Data problem that will be addressed using NSF XSEDE resources. 
Through the framework, researchers working on data integration of satellite radar 
and in situ ground deformation measurements will have easy and open access to 
multi-data real-time platforms on which to evaluate the latest results and to test 
data integration and inversion methodologies using these advanced data products, 
augmented and validated with additional monitoring data.

Range change (mm)

TerraSAR-X interferogram  of ground motion at Yellowstone 
caldera (dashed black line). Each color contour represents a line 
of equal motion in the satellite line-of-site. Yellowstone lake is 
shown in blue; white circles are seismic events, July 
2015-October 2017 (provided by Chuck Wicks, USGS).



TO DATE:
DInSAR  time series processed for both Yellowstone and Hawaii.

Methodology designed, tested and implemented for automated 

time series processing of volcanoes using both GIAnT and MSBAS.

Algorithm for producing SAR data in SLC format subsampled to a 

regular grid, with topography removed and corrected for baselines 

and precise orbits prior to delivery (Zebker, 2017), facilitating rapid 

processing of interferograms and LOS displacement time series.

NEXT STEPS:

Integration of GPS and DInSAR time series.

Test combined DInSAR and GPS time series, as well as GPS time 

series and DInSAR time series as separate data streams, in machine 

learning for intermediate- and short-term forecasting .

Acquisition of seismic data and integration into above 
methodologies.



Left: Yellowstone park outlined in 
black; separate frames, colored 
squares (2 ascending, 3 descending).

Automated processing
Yellowstone caldera

Automated DInSAR processing and 
time series generation at Yellowstone

● Available frames, below
● Final velocity map, ascending images 

(upper right)
● Final velocity map, descending 

images (lower right)

Left: LOS velocity map, ascending track 49, 
Frame 142, February 2016 to December 
2018.
Below: LOS velocity map, descending track 
100, frame 146, February 2017 to January 
2019.



Hawaii time series processing, October 2017 through June 2018.  
Left: Results using all precise orbits.  Center: Results using 39 
images with precise orbits, 6 real-time orbits.  Right:  Difference 
between processing using all precise orbits (left) and a mixture 
(center). Note change in scales. LOS change in cm/year.

Automated processing
Yellowstone and Hawaii

Impact of not using precise orbit corrections in real-time 
processing, automated time series generation 

● Simulated processing using precise orbits for processing 
older images (timesteps 1-39) and real-time orbits for the 
last six timesteps



Automated processing
Yellowstone and Hawaii

Assess the impact of atmospheric corrections on individual DInSAR image correction at Yellowstone
● Here we use the Generic Atmospheric Correction Online Service for InSAR (GACOS) developed by COMET 

(Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics) for three individual time 
periods (ceg-research.ncl.ac.uk/v2/gacos/).

Top: Sentinel-1A DInSAR pair, 2017-12-10 to 2017-12-22.  Left shows originally processed pair, the middle is the 
downloaded GACOS correction, and right is the corrected image.  Bottom:  Same as for the top, except that the time 
period is 2017-11-28 to 2017-12-10.  Scale is LOS change in cm.



Next Step: Machine learning
Model and time series produced 
from ICA/machine learning analysis 
of the 2018 eruption of Sierra 
Negra (Gaddes et al., 2019).









Project Architecture



Software component evaluation



Use-case: Machine Learning@GeoSciFramework for Tsunami Early Warning
"Increase precision and delay for Tsunami warning by analyzing multiple 
geographically distributed data sources simultaneously"

To issue Tsunami Early Warnings, earthquakes must first be characterized (magnitude, location, speed of 
displacement, etc.)
Seismometers are good for the smaller earthquakes (< 6.5), high-precision GPS are good for larger 
earthquakes
Goal: combining multiple data sources to improve the precision and delay to issue warnings by covering the whole 
spectrum of events



Breakdown of tasks for Exemplar
 

1.     Data Producers (Kafka) for real-time data
a.     UNAVCO

                                               i. Kathleen has this for streaming positions from GNSS
b.     IRIS – Kathleen Seedlink to Kafka
c.      OOI – JJ (optional for real-time from sensor not IRIS)

2.     Data Ingesters (not through Kafka)
a.     Scott has daily .pos and UNR daily and 5 minute (ETL)

                                               i. Geopackage
b.     SAR scenes to HDF5

                                               i. Data from Sentinel on XSEDE (Scott)
                                              ii. Timeseries (Kristy and Brie)

1.     Create HDF5 Phase (GeoCoded)
2.     Hawaii timeseries (Scott and Kristy)

c.      Synthetic data and historic event data ingester to HDF5 (Tim visit Scott)
d.  Copy GNSS ppp files to XSEDE data directory for Diego to do noise analysis on (Kathleen, Scott, Diego)

 



Breakdown of tasks for Exemplar
 

3.     Metadata Management
a.     Metadata source to TimescaleDB

                                               i. Vocabulary (Ivan)
1.     Lat, Long, Instrument, Sample rate create a GoogleDoc and suggest minimum vocabulary (see 
Scott’s example)
2.     FAIR attribution e.g. provenance of data

                                              ii. GPS – Ingestdb from RT-GNSS system to TimescaleDB (Kathleen)
                                            iii. IRIS data  - pull dataless seed to TimescaleDB (Kathleen)
                                            iv. SAR - mv_ssara  (Scott has this)
                                              v. Synthetic Metadata (Tim)

4.     Data Consumers
a.     Training synthetic timeseries machine learning (Tim and Diego)
b.     Inference / forecasting on actual event data (Tim and Diego)
c.      Volcano deformation source model (Brie and Kristy)

                                               i. Later add strain, GPS etc
d.     Inference / forecasting on actual event data (Brie and Kristy)

 



 
5.     Jupyter notebooks (GIT)

a.     ETL in notebooks
                                               i. See GNSS positions (Scott)
                                              ii. Timeseries of Doppler from SAR
                                            iii. Data search and access for GeoServer. WFS accessor
                                            iv. Analysis for machine learning



 
6.     Scalability and other component testing

a.     Jetstream platform – install all components of framework (JJ and Scott)
                                               i. DCOS and Components

1.     Kubernetes
2.     Kafka
3.     Jupiter Hub

a.     Tensor Flow
4.     TimescaleDB
5.     Elasticsearch/Kibana (AWS Opendistro)
6.     Grafana
7.     Geoserver
8.     Scott’s collection of geodesy tools

 
                                              ii. Docker Compose for local development. Launch entire stack on local machine

1.     Look at Scott’s notebook development repo
a.     Tutorial for inreach for the framework

2.     Kathleen’s Compose file for
b.     Task of looking at persistency layer (file or database) scalability for timeseries

                                               i. Take all OOI data and IRIS / UNAVCO timeseries and put into persistancy layer and test 
response, scalability
                                              ii. Autoscaling
 







3 minute update:
ML and earthquake characterization

Diego Melgar, Jiun-ting Lin, Dara Goldberg
University of Oregon

Earth Sciences



Update and Next Steps: 
InSAR Processing 

- Finished time series for Hawaii and Yellowstone 
with Sentinel and have them set up to 
automatically update

- Applying new method of InSAR processing: 
compiling new scripts to work within GMT5SAR

- Accessing GPS data so we can start to 
implement machine learning on the time series, 
both separately and as an integrated product

- We also have started to source seismic data for 
Hawaii (IRISS and ANSS), to start to generate 
time series for machine learning inputs too 

(a) Traditional InSAR processing workflow, (b) The proposed InSAR 
processing workflow. (Zheng, Y., & Zebker, H., 2017)
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Software component evaluation



Use-case: Machine Learning@GeoSciFramework for Tsunami Early Warning
"Increase precision and delay for Tsunami warning by analyzing multiple 
geographically distributed data sources simultaneously"

To issue Tsunami Early Warnings, earthquakes must first be characterized (magnitude, location, speed of 
displacement, etc.)
Seismometers are good for the smaller earthquakes (< 6.5), high-precision GPS are good for larger 
earthquakes
Goal: combining multiple data sources to improve the precision and delay to issue warnings by covering the whole 
spectrum of events




