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The project addresses goals of the National Strategic Computing Initiative (NSCI). a whole-of-nation effort to
accelerate scientific discovery and economic competitiveness by maximizing the benefits of high-performance
computing (HPC) research, development, and deployment. It also addresses the NSF Harnessing the Data
Revolution (HDR) Big Idea. a national-scale activity to enable new modes of data-driven discovery that will allow
new fundamental questions to be asked and answered at the frontiers of science and engineering.



— GeoSciFramework

Project Overview: GeoSciFramework will provide
an experimental computational framework that
enables natural hazards research and enhanced
earthquake, tsunami and volcano early warning
systems.

Real-time streaming analytics and machine
learning on continuous integrated data streams
from thousands continental and oceanic high-rate
sensors, when combined with satellite radar time
series, will give a coherent high-resolution — £
global-scale view of the motions of the earth over  map: onshore and offshore sensor networks spanning Cascadia to
Yellowstone. Photos: Ocean Bottom Seismometer (Rutgers/0O0l),

tl me periOdS Of Seconds tO yea rs. Seismograph Station (PNSN/IRIS), Borehole Strainmeter and GPS/GNSS
Station at Mt. St. Helens (UNAVCO/GAGE)

e Participating Institutions: UNAVCO/GAGE, Rutgers University (Ocean Observatories Initiative
- 0O0I), University of Colorado, University of Oregon
e Collaborating Institutions: IRIS/SAGE, University of Texas Arlington (TACC/XSEDE)




- GeoSciFramework

® Integrated data access: The framework
leverages and provides seamless access
to considerable NSF investments in
EarthScope (GAGE and SAGE) and OOl in
situ sensor networks,
internationally-operated space radar
systems, and NSF XSEDE computational
and data storage resources.

Sample data from GPS (1s/day), high-rate GPS (1s/sec),
borehole strainmeters, pore pressure, borehole seismometer,
tiltmeter, ocean bottom seismometer, ocean hydrophone,
ocean bottom pressure, insar image and insar time series
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Boulder NOC

VMWare
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Complete overhaul of the VPN.
Careful cost analysis.
Multiple user communities.




. g Broader Impacts

® Broader Impacts Activities:
Resources for internal and
external capacity building are
integral to the project including
support for students and
technical workshops,
development of supportive
materials such as online
notebooks, and access to open
software development
platforms and computational
resources.

Two UNAVCO USIP student interns for
Summer 2019.

Working in-reach/out-reach material for
GEOSciCloud and GEOSciFramework
developing Jupyter noterbooks
demonstrating and teaching access to
UNAVCO data (e.g. how to access and use
real-time GNSS positions)
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The project architecture provides generalized, scalable (laptops to cloud
computing), fault-tolerant, real-time, event-based data processing and R

analysis capabilities for time series data from distributed sources. GeoSCIFramework
o Machine Learning: an advanced convolutional neural network method Data Search/Analysis/Visualization
. . . . . . . Kibana/Grafana, Notebooks (Jupyter, Zeppelin), GeoServer/GeoMesa
is employed in an integrative multi-data environment. Machine
learning algorithms and spatio-temporal analyses are trained using SparkML
past events and informed by physics-based models. A

e Computational Resources: The computationally intensive attempt to
bI.indIy correlate a large number of variables and large volumes of data S tratir e S Dt Ricre
will be performed on local clusters and NSF-funded cloud resources Kafka, Elasticsearch
managed by XSEDE, such as Jetstream.

e Application: This method supports the automatic detection and
characterization of rapid events such as earthquakes and tsunamis as A
well as slow-slip events or magmatic intrusions that evolve over a
longer period of time expanding the potential for new scientific

Cassandra, Accumulo, InfluxDB

[elIOd YIOM3WEI{[)S099)

Y

Data Ingest/Stream Processing (e.g. ETL)
NiFi, Kafka Connect, Logstash, Filebeats, Kafka Streams, Spark

discoveries.
o el .s . . Akka, Storm, Heron, Flink, Flume, Alluxia
e Broader Impacts Activities: To facilitate discoveries, the system :
architecture will provide simplified access to tools, sophisticated A

workflows systems and training targeted at non-computer scientists
(researchers and students).

Time series: Real-time/Historical/Synthetic

e Algorithm development: An interactive environment allows users to GNSS
test, modify, and implement their ideas as they integrate the large ISnS_AR
. . . . . . 1
variety and volume of this data into new machine learning and analysis Es:r:?slc(earthquakes. eruption, ...)

algorithms and products.
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https://docs.google.com/file/d/1g-vFaYASufQKy4LG6mQfC4PyHvZdGptC/preview
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3400 Fakequakes

+
3400 noise data

6800 data
\

[
Training
5440 (80%)

\
( \

Training Validating
4896 (90%) 544 (10%)

Testing
1360 (20%

Best model!
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Williamson et al., in review

Offshore hazards simulations

e Realistic offshore pressure and coastal tide gauge data

e Modeled on-shore inundation

e Testing of algorithms, how well and how quickly can we

forecast the induation?
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Next steps 128" 126" -124' -122-128' 126" -124° -122-128' -126° 124" -—122

Who cares about
the earthquake?

Predict/forecast
shaking intensity and
tsunami heights

0 10 20 30 40 0 2 4 6 8 10 0 2 4 6 8 10
Slip(m) MMI Tsunami ampl. (m)
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Kristy Tiampo, University of Colorado

Intermediate-term Events. Natural catastrophes occur at a variety of spatial and
temporal scales. In particular, solid earth hazards, such as large earthquakes and
volcanic eruptions, often have very long interevent times and this makes it difficult
to forecast their behavior. This part of the project pulls in multiple data sets to
address the long- intermediate- and short-term forecasting of these types of events.
Test sites include the Yellowstone magmatic center and the Hawaiian island
volcanoes.

e Data Sources: Data types include in situ seismic, strain, GNSS, gas and thermal
sensors and remote-sensing synthetic aperture radar (SAR) data.

e Algorithms: Repeatedly acquired SAR data from a single sensor can be used to
obtain differential interferometric synthetic aperture radar (DInSAR) estimates of
ground deformation and associated time series. In addition, a new technique,
Multidimensional Small Baseline Subset, allows us to incorporate Interferometric
SAR results from different satellites and wavelengths into one time series. Here we
process DINSAR for Yellowstone and include them in the time series stream,
integrated with GNSS data, providing 3-d surface motions of the caldera.

e Broader Impacts Activities: The analysis of SAR data on a global scale is a
petabyte-scale Big Data problem that will be addressed using NSF XSEDE resources.
Through the framework, researchers working on data integration of satellite radar
and in situ ground deformation measurements will have easy and open access to
multi-data real-time platforms on which to evaluate the latest results and to test
data integration and inversion methodologies using these advanced data products,
augmented and validated with additional monitoring data.

44°30'

EQ Magnitude

| 01390(ss) .

44°00'

[ETV2] 2018 Feb 04 18:30:48 | TSX 20150727_20171020, R100, iang=36.4 deg, Bperp= 29 m, Infgrm Egs = white
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TerraSAR-X interferogram of ground motion at Yellowstone
caldera (dashed black line). Each color contour represents a line
of equal motion in the satellite line-of-site. Yellowstone lake is
shown in blue; white circles are seismic events, July
2015-October 2017 (provided by Chuck Wicks, USGS).
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TO DATE:
DInSAR time series processed for both Yellowstone and Hawaii.

Methodology designed, tested and implemented for automated
time series processing of volcanoes using both GIAnT and MSBAS.
Algorithm for producing SAR data in SLC format subsampled to a
regular grid, with topography removed and corrected for baselines
and precise orbits prior to delivery (Zebker, 2017), facilitating rapid
processing of interferograms and LOS displacement time series.
NEXT STEPS:

Integration of GPS and DInSAR time series.

Test combined DINnSAR and GPS time series, as well as GPS time
series and DInSAR time series as separate data streams, in machine
learning for intermediate- and short-term forecasting .

Acquisition of seismic data and integration into above
methodologies.




EARTH o Automated processing
Yellowstone caldera

Automated DInSAR processing and

time series generation at Yellowstone ‘

e Available frames, below

e Final velocity map, ascending images
(upper right)

e Final velocity map, descending

images (lower right)

Left: LOS velocity map, ascending track 49,
Frame 142, February 2016 to December
2018.
Below: LOS velocity map, descending track
100, frame 146, February 2017 to January
2019.

Left: Yellowstone park outlined in
black; separate frames, colored
squares (2 ascending, 3 descending).



EARTHCUBE Automated processing
Yellowstone and Hawaii

Impact of not using precise orbit corrections in real-time
processing, automated time series generation

e Simulated processing using precise orbits for processing Hawaii time series processing, October 2017 through June 2018.

Left: Results using all precise orbits. Center: Results using 39

older images (timesteps 1-39) and real-time orbits for the images with precise orbits, 6 real-time orbits. Right: Difference
last six timesteps between processing using all precise orbits (left) and a mixture
(center). Note change in scales. LOS change in cm/year.
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EARTHCUBE Automated processing
Yellowstone and Hawaii

Assess the impact of atmospheric corrections on individual DINSAR image correction at Yellowstone

e Here we use the Generic Atmospheric Correction Online Service for InNSAR (GACOS) developed by COMET
(Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics) for three individual time
periods (ceg-research.ncl.ac.uk/v2/gacos/).

Original Correction Corrected
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Top: Sentinel-1A DInSAR pair, 2017-12-10 to 2017-12-22. Left shows originally processed pair, the middle is the
downloaded GACOS correction, and right is the corrected image. Bottom: Same as for the top, except that the time
period is 2017-11-28 to 2017-12-10. Scale is LOS change in cm.
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Q@ Next Step: Machine learning
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EARTHCUBE
Framework Architecture Guidelines

* Based on independent, replaceable, modular components.
* Don’t blindly commit to a technology stack, don’t get locked in.
* Highly Available and Scalable.

* Automatic Fail-Over and Self-Healing mechanisms.
* Scalable by design and Auto-Scaling capabilities.
* Must adopt DevOps and Monitoring practices to help manage
complexity and reduce overheads.
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heat_template_version: rocky

% EARTHCUBE
Infrastructure, an example

»

@ description: >
dcos cluster hosts

resources:

mynetwork-gsf:
type: 0S::Neutron::Net

properties:
name: mynetwork-gsf

mysubnet-gsf:
type: 0S::Neutron::Subnet
properties:
name: mysubne

* Automation is a must to manage complexity, scalability,
testing, and reproducibility.

* Tools like Terraform, CloudFormation, Heat, etc. allow
to “codify” the details of an infrastructure.

* No need to go all the way with one tool, use the right

E.g. RDI? (Rutgers) testbed:

tool for the job.

Name ~

Status @

Version

Region

ssandra
% elastic
grafana 2
jupyterlab-notebook
kafka
& kibana [2

® marathon-Ib

© Runnin

© Runni
© Runni
© Runni
© Runni

© Runni

© Runnin

5 55155
@ @8 @ @ @ &8 @

314

N/A
N/A
N/A

N/A

N/A

N/A 1 0.5 2GiB o8B o

N/A 1 2 1GiB 0B 0

Spinning up the infrastructure hosts defined using a Heat template takes around 5 minutes.
Deploying an Open Source DC/OS cluster using Ansible takes around 5 minutes.

Takes 20 minutes to deploy 5-n Cassandra cluster, 3-n Kafka cluster, 6-n Elasticsearch cluster, Kibana, Grafana and Jupyterhub.

In about 30 minutes we have deployed a reproducible full-fledged “modern” data architecture!
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EARTHCUBE
Software component evaluation

Integration of RT data flow, analysis and archiving
' kibana Monitoring

UNAVCO,_ T l Visualization

NTRIP CASTER

Positions

T RT-Analysis Grafdna
Ntrip2Kafka —} % kdfka

Python Producer 0 A sl g g
ooooooooooooooo L bt dh2e Al " . f\_ f g r\
° . PN Fik IR W SR S P LM GRS AL L g
. . g
° .

i Real-time m» elasticsearch —— 6

(o
TIMESCALE

Database Buffering |

Work in Progress:

GeoSciFramework
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Use-case: Machine Learning@GeoSciFramework for Tsunami Early Warning

"Increase precision and delay for Tsunami warning by analyzing multiple
geographically distributed data sources simultaneously"

To issue Tsunami Early Warnings, earthquakes must first be characterized (magnitude, location, speed of
displacement, etc.)

Seismometers are good for the smaller earthquakes (< 6.5), high-precision GPS are good for larger
earthquakes

Goal: combining multiple data sources to improve the precision and delay to issue warnings by covering the whole
spectrum of events

# 60s MTS GPS (# Events) Seismic (# Events)
Data sources (sensor networks) Observatories GeoSciFramework Magnitude < 5 7,718 (170) 1,038 (349)
Event triggering (e.g., in-situ I o q Machine-learning: decision making 5 < Magnitude < 6 3,859 (85) None
analytics, data management) n-transit processing based on events 6 < Magnitude < 7 991 (4) 266 (4)
7 < Magnitude < 8 432 (6) 249 (6)
\:l_E; | — Magnitude > 8 265 (4) 133 (4)
Seismometers D‘E‘} IRIS Total 13.265 (269) 1,686 (363)

‘ah-orecisi — 100 - M<5 2_ 5 ;
o precisn S unavco, = = O
\:I'E"' — = - f- T<M<8 _ TN
o) i ; ; ] . 5 S< M E_)(] . 5 8< M
5 5( 2
Underwater D—E: = £
Pressure 2
Sensors I:l-E: J J J
0
1 2 3 | 5 %5 2 3 4

Magnitude Prediction Magnitude Prediction
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Breakdown of tasks for Exemplar

1. Data Producers (Kafka) for real-time data
a. UNAVCO
i. Kathleen has this for streaming positions from GNSS
b. IRIS — Kathleen Seedlink to Kafka
c. OOl - JJ (optional for real-time from sensor not IRIS)

2. Data Ingesters (not through Kafka)
a. Scott has daily .pos and UNR daily and 5 minute (ETL)
i. Geopackage
b. SAR scenes to HDF5
i. Data from Sentinel on XSEDE (Scott)
ii. Timeseries (Kristy and Brie)
1. Create HDF5 Phase (GeoCoded)
2. Hawaii timeseries (Scott and Kristy)
c. Synthetic data and historic event data ingester to HDF5 (Tim visit Scott)
d. Copy GNSS ppp files to XSEDE data directory for Diego to do noise analysis on (Kathleen, Scott, Diego)
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Breakdown of tasks for Exemplar

3. Metadata Management
a. Metadata source to TimescaleDB
i. Vocabulary (Ivan)
1. Lat, Long, Instrument, Sample rate create a GoogleDoc and suggest minimum vocabulary (see
Scott’'s example)
2. FAIR attribution e.g. provenance of data
ii. GPS - Ingestdb from RT-GNSS system to TimescaleDB (Kathleen)
iii. IRIS data - pull dataless seed to TimescaleDB (Kathleen)
iv. SAR - mv_ssara (Scott has this)
V. Synthetic Metadata (Tim)
4. Data Consumers
a. Training synthetic timeseries machine learning (Tim and Diego)
b. Inference / forecasting on actual event data (Tim and Diego)
c. Volcano deformation source model (Brie and Kristy)
i Later add strain, GPS etc
d. Inference / forecasting on actual event data (Brie and Kristy)
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5. Jupyter notebooks (GIT)
a. ETL in notebooks
i. See GNSS positions (Scott)
ii.  Timeseries of Doppler from SAR
iii. Data search and access for GeoServer. WFS accessor
iv. Analysis for machine learning
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6. Scalability and other component testing
a. Jetstream platform — install all components of framework (JJ and Scott)
i. DCOS and Components
1. Kubernetes
2. Kafka
Jupiter Hub
a. Tensor Flow
TimescaleDB
Elasticsearch/Kibana (AWS Opendistro)
Grafana
Geoserver
Scott’s collection of geodesy tools

w

© N O

ii. Docker Compose for local development. Launch entire stack on local machine
1. Look at Scott’s notebook development repo
a. Tutorial for inreach for the framework
2. Kathleen’s Compose file for
b. Task of looking at persistency layer (file or database) scalability for timeseries
i. Take all OOl data and IRIS / UNAVCO timeseries and put into persistancy layer and test
response, scalability
ii.  Autoscaling



S
%E " Next Steps

« Settle on phase 1 system « Finish event modeling software
architecture and software stack « Finish initial data integration

« Download and automatically « Publish Jupyter Notebooks
process SAR data on XSEDE « Complete Summer “Sprint”

= GeoSciFramework (Internal Website)

GeoSciFramework




(Meta)Data Stores
® Search/Processing/Analysis/Visualization GeoPackage / dqlite
PostgreSQL / PostGIS / TimescaleDB
@ EARTHCUBE OGC Web Services (WFS, WPS, CSW, SOS, HDF5 / ObjectStore/S3 / FTP
WMS/WMTS) ]
« GeoServer / GeoMesa FAIR/DOIs/Research Objects
« OpenSensorHub « http:/lwww.rohub.org/
« Zenodo

Notebooks: Jupyter - JupyterLab - Zeppelin
« Data Science Notebooks
« Geodesy Toolkit: GNSS, InSAR, seismic data

4 ’; Stream/Time Series Store
processing/analysis software

3 : i Pulsar
« Machine Learning: scikit-learn, pytorch, theano, Kafka
opency, keras, tensorflow €——___ PostgreSQL/PostGIS/TimescaleDB
H5serv / hsds
Grafana, OpenSphere, TerriaMap/TerriaJS e
Cassandra

Influxdb, accumulo

A A A
1
1
1
1
1
1
1
1
1
1
1
Y L
Science Data/Streams
Real-time GNSS, Borehole
GNSS orbits, clocks Data Ingest/Stream Processing (ETL)
IRIS - Seismic, OO 2Pk
Pulsar

SAR orbits, data (raw, slc, time series, velocities) ——

Logstash, Beats (Filebeats)
Kafka Streams / Kafka Connect
Orbits: SAR, GNSS Akka, Storm, Heron, Flink, Flume
Events: Earthquake, Eruption, Weather

Cluster orchestration/management: DC/OS (Mesos), Ambari (YARN/Hadoop), Rancher (Cattle, k8s, Mesos, Swarm), Rancher 2.0 (k8s)
Cluster technologies/Distrik d Computing: Mesos, Kubernetes, Docker Swarm, YARN/Hadoop
Infrastructure: Bare Metal, VMs, loT / Edge
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Qe Update and Next Steps:
INSAR Processing

(a) (b)
-  Finished time series for Hawaii and Yellowstone L [[LRewom Raw Data Raw Data 9
with Sentinel and have them set up to provder | ¥ v ¥
. —| sic1 > € slc2 sie1 sic2
automatically update . T
A Topograph Topograph ta
. . Interferogram cc::'r:cti?)ny C(:)rr:cﬁzny T)r?):ider
- Applying new method of INSAR processing: T
compiling new scripts to work within GMT5SAR — Topagaphy
user ‘ Topogr:p:y Topogr.tap;\y |
- Accessing GPS data so we can start to Geocods goocaded 83 gpecedad 8164
implement machine learning on the time series, ¥ : o
. Topography corrected, Topography corrected,
both Separately and as an |ntegrated prOduCt L geocoded interferogram geocoded interferogram

- We also have started to source seismic data for
Hawaii (IRISS and ANSS), to start to generate
time series for machine learning inputs too

(a) Traditional INSAR processing workflow, (b) The proposed InSAR
processing workflow. (Zheng, Y., & Zebker, H., 2017)



B Ervrncune Project Architecture

Quem Yisu:{/\fzatiof, aloer:ﬁr,wg, o Subscribe to streams of data, request a dataset replay, or write Search, browse, down/oad/ulp o
F i 5 Lamear T stream processing applications that react to events in real-time -=3 datasets, or work{on them/dirsctly from
R : and metrics : : any other GeoSci Framework tool
1 1 T 1 T
1 1 1
0 == =
T Processing Datasets
g §g Streaming Engines APls repository
Data

N X0 @ S
D

INGESTION Ingestl:)n P?ce.ssmg R Dat.at

QUEUES ven : ngines epository

Processing IPy: »

B AN e éFlink %l Solr
A Qé;' nlfl STORM samvera”
c o
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(/5] Time Series

w Database .
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8 Time Series Relational Search Engine Data Storage

=) Database @ Database \ = \/O
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EARTHCUBE
Software component evaluation

Integration of RT data flow, analysis and archiving
' kibana Monitoring

UNAVCO,_ T l Visualization

NTRIP CASTER

Positions

T RT-Analysis Grafdna
Ntrip2Kafka —} % kdfka

Python Producer 0 A sl g g
ooooooooooooooo L bt dh2e Al " . f\_ f g r\
° . PN Fik IR W SR S P LM GRS AL L g
. . g
° .

i Real-time m» elasticsearch —— 6

(o
TIMESCALE

Database Buffering |

Work in Progress:

GeoSciFramework
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Use-case: Machine Learning@GeoSciFramework for Tsunami Early Warning

"Increase precision and delay for Tsunami warning by analyzing multiple
geographically distributed data sources simultaneously"

To issue Tsunami Early Warnings, earthquakes must first be characterized (magnitude, location, speed of
displacement, etc.)

Seismometers are good for the smaller earthquakes (< 6.5), high-precision GPS are good for larger
earthquakes

Goal: combining multiple data sources to improve the precision and delay to issue warnings by covering the whole
spectrum of events

# 60s MTS GPS (# Events) Seismic (# Events)
Data sources (sensor networks) Observatories GeoSciFramework Magnitude < 5 7,718 (170) 1,038 (349)
Event triggering (e.g., in-situ I o q Machine-learning: decision making 5 < Magnitude < 6 3,859 (85) None
analytics, data management) n-transit processing based on events 6 < Magnitude < 7 991 (4) 266 (4)
7 < Magnitude < 8 432 (6) 249 (6)
\:l_E; | — Magnitude > 8 265 (4) 133 (4)
Seismometers D‘E‘} IRIS Total 13.265 (269) 1,686 (363)

‘ah-orecisi — 100 - M<5 2_ 5 ;
o precisn S unavco, = = O
\:I'E"' — = - f- T<M<8 _ TN
o) i ; ; ] . 5 S< M E_)(] . 5 8< M
5 5( 2
Underwater D—E: = £
Pressure 2
Sensors I:l-E: J J J
0
1 2 3 | 5 %5 2 3 4

Magnitude Prediction Magnitude Prediction





